A Composite Likelihood Approach to Computer Model Calibration with High-dimensional Spatial Data

نویسندگان

  • Won Chang
  • Murali Haran
  • Roman Olson
  • Klaus Keller
  • KLAUS KELLER
چکیده

In this paper, we introduce a composite likelihood-based approach to perform computer model calibration with high-dimensional spatial data. While composite likelihood has been studied extensively in the context of spatial statistics, computer model calibration using composite likelihood poses several new challenges. We propose a computationally efficient approach for Bayesian computer model calibration using composite likelihood. We also develop a methodology based on asymptotic theory for adjusting the composite likelihood posterior distribution so that it accurately represents posterior uncertainties. We study the application of our approach in the context of calibration for a climate model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Regression in the Presence of Misaligned data

In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method‎, ‎simulation‎, ‎regression calibration and maximum likelihood‎. In the first two approaches‎, ‎with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Composite Likelihood Methods

Composite likelihood methods are extensions of the Fisherian likelihood theory, one of the most influential approaches in statistics. Such extensions are generally motivated by the issue of computational feasibility arising in the application of the likelihood method in high-dimensional data analysis. Complex dependence presents substantial challenges in statistical modelling and methods and in...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014